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A QUANTUM BASIS FOR THE RELATIVISTIC 
DOPPLER EFFECT FOR LIGHT *) 

Daniel L. Alkon UDC 537.872+530.12 

In the first of two derivations of the relativistic Doppler effect, obtained without directly applying the 
Lorentz transformations, the principle of relativity is used to introduce a probabilistic frequency- 
squared term and, thus, macroscopic uncertainty into the classical Doppler equations. In the second 
derivation, the classical Doppler effect for a moving mirror is broadened when introduction of 
Planck's law for radiation from a light source includes high radiation frequenc&s and thus high elec- 
tron velocities (V---) c). These methods are suggested to more directly describe intrinsic probabilistic 
properties of electromagnetic radiation rather than measurement differences attributable to a moving 
frame of reference. 

Introduction. In the realm of atomic and subatomic particles, limits of measurement, independent of 
the measuring devices available, define essential uncertainties. Such uncertainties often necessitate physical de- 
scriptions that involve probability distributions for quantum states. In the realm of macroscopic phenomena, 
many of  which are accessible to human perception, there is a "macroscopic" uncertainty, an uncertainty that 
can often be overcome by additional information. The principle of relativity, for example, includes an unavoid- 
able ambiguity between a moving observer and a stationary frame of reference. In the absence of additional 
spatial and/or temporal information (such as those provided by a third, designated "stationary" frame of refer- 
ence), an observer cannot discriminate his own movement at a constant velocity from the movement of  a 
nearby frame of reference. It is, therefore, appropriate to distinguish "macroscopic" uncertainty from "micro- 
scopic" uncertainty. "Macroscopic" uncertainty can be reduced or eliminated by additional information, while 
"microscopic" uncertainty often cannot be offset beyond certain limits of measurement regardless of the avail- 
able measuring devices. Nevertheless, macroscopic uncertainty can include parameters that are statistical aver- 
ages taken across probability distributions. Microscopic uncertainty, however, includes parameters obtained 
from quantum mechanical averages taken across probability distribution(s) defined for quantum states. 

Einstein's special theory of  relativity begins with macroscopic uncertainty and, via the Lorentz trans- 
formations, extends into the realm of  atomic and subatomic particles and thus microscopic uncertainty. Ex- 
trapolation from the relativity of  macroscopic movements  yields accurate descriptions of  a number  of  
subatomic characteristics such as relativistic velocity, relativistic frequency, an d  relativistic mass as particle ve- 
locities approach the speed of light. However, since the same description may also be obtained, as decribed 
here, by applying principles of quantum theory, the latter may more accurately reflect the nature of the uncer- 
tainty that results when atomic and subatomic particles move with velocities that approach the speed of light. 

According to the thesis examined here, when the special theory of relativity can be tested, it actually 
applies to microscopic uncertainty that falls within the domain of quantum theory. Based on the arguments that 
follow, the relativistic Doppler effect for light involves actual physical transformations of subatomic light 
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sources (e.g., electrons) as they approach the speed of light. Rather than frames-of-reference differences, the 
Doppler shifts of light frequency are suggested to more directly reflect velocity-induced energy shifts of light 
sources and their emissions within the quantum theoretic domain. 

The theory of relativity of  Einstein [1] broadens the classical principle of  relativity to include electro- 
magnetic waves by using the Lorentz transformations to take into account the inherent macroscopic uncertainty 
of moving frames of reference. Two different cases will be examined here in which the relativistic Doppler 
effect will be derived without directly applying the Lorentz transformations, but instead by considering: 

1) inherent uncertainties (macroscopic) within moving reference frames; 
2) inherent uncertainties (microscopic) of photon distribution and frequency that are intrinsic to electro- 

magnetic-wave motion. 
C a s e  1. Generalization of the Doppler effects for sound waves to classical Doppler effects for light 

waves must take into account that: 
I) light requires no medium (i.e., ether) and, therefore, is considered to propagate in  v a c u o ;  

2) the actual speed of  light (c) is constant and independent of movements of either the source (S) or 
the observer (O); 

3) there should be no difference (measurable by O) between the case where S moves toward O or O 
moves toward S. 

As a first approximation, the Doppler effect for sound waves and light waves (classical) can be derived 
from the fundamental relations between wavelength (~,), frequency (]), and relative velocity of motion (v) be- 
tween S and O. 

For a stationary observer O and a source S moving toward O, the source velocity reduces the waves at 
their origin, i.e., causes wave shortening, as specified by 

X = (c - ~) r p ,  

where v is relative velocity of S; T v is the period; ( c -  v) is the wave speed relative to S. The new frequency 

f is given by 

c c _____C__c f 
f -,o (c-v)r  c - v  

o r  

f~_,o = f 
V 

l - - - -  
C 

For a stationary S and an 0 moving toward S the moving observer encounters a greater number of waves (in 
unit time) and thus causes an increase in frequency given by 

fo C+V ~ s  = ~, , 

C 
where (c + v) is the wave speed relative to the observer. Since k = f '  we obtain 

f o - - * S  - c + v f  
C 

o r  
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By similar arguments, when S moves away from O, we have 

f 
f*--SO -- v 

l + - -  
c 

and when O moves away from S; 

Now for v << c we obtain 

fs--~O = / ( ~ S  " 

However, as v ~ c, f '  ~ f " ,  as is readily apparent from comparisons of the binomial expansions for f '  and f " :  

fs_..~= f =(l +V v2 ~f + - 5 +  . . . .  (I) 
1 _ v  c c 

c 

f o o s  = (l  + ~ .  (2) 

The principle of relativity includes an unavoidable uncertainty encountered by the observer moving 
with a constant velocity. In the absence of other information the observer cannot discriminate his own motion 
from the motion of an observable stationary frame of reference. For our purposes here, this uncertainty of ob- 
server/frame of reference will be designated as "frame-of-reference" uncertainty. With respect to this unavoid- 
able frame-of-reference uncertainty, Eqs. ( l)  and (2) adequately describe wave motion and frequency shifts for 
a moving light source S and observer O for v ~ c. For v << c expressions (1) and (2) almost coincide, and thus 
by measuring a frequency shift the observer would not easily discriminate his motion from the motion of the 
light source. However, when v--~ c, expressions (1) and (2) differ due to higher-order terms of  the binomial 
expansions. 

We now ask whether it is possible to obtain directly from Eqs. (1) and (2), as separately formulated, a 
combined expression that includes both equations such that "frame-of-reference" uncertainty (i.e., the inability 
to discriminate f from f " )  increases so as to be consistent with the principle of  relativity as applied to light- 
wave propagation. 

Frame-of-reference (macroscopic) uncertainty (i.e., the principle of  relativity) implies that it is not pos- 
sible for an observer (O) to predict exactly whether a source (S) or an observer (O) is moving at a given 
instant of time, for a given movement of S relative to O. It is only possible to predict that either of these two 
possibilities or a combination of these two will occur with a certain probability. Thus, frame-of-reference un- 
certainty implies that probabilisfic term(s) must be included in order that a description of light-wave propaga- 
tion will encompass the principle of relativity. 

For an amplitude function in general the square of that function is most commonly considered to be 
proportional to the probability distribution of possible values of that function. We will seek, therefore, a mathe- 
matical step whereby a squared term (proportional to probability) for frequency, f2,  can be obtained from the 
classical Doppler equations (1) and (2)just  described. 

Multiplying Eqs. (1) and (2), we obtain directly an expression that now includes the squared term f2: 

f,f-_ 1 ( v)f c+vf2 
l - V  f 1 + c  =c-v 
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. . 1 / 2  

The principle of relativity specifies sufficient frame- of-reference uncertainty when f '  cannot be dis- 
criminated from f . Thus, to satisfy the principle of relativity we suppose that in expression (3), as v ~ c, 

- . 1 / 2  

o r  

1/2  
"C + v (4) 

Equation (4) describes the relativistic Doppler effect for light waves since it can readily be shown that this 
equation is equivalent to the more familiar formulation 

f '=  f 1 _ v  ' 
1 _ v  

c 

in which the classical formulation f/(1 - v )  is modified by the term (1 - 2 v )  1/2 taken directly from the Lorentz 
c c"  

transformations. However, in the derivation just described for the relativistic Doppler effect, no introduction of 

the Lorentz-transformation term 7 was necessary. It was only necessary to apply the principle of relativity di- 

rectly to the product of  the equations for the classical Doppler shift in a functional expression for f2. 
A similar non-Lorentzian derivation for the relativistic Doppler shift when S moves away from O or O 

moves away from S will produce the equation 

. . 1 / 2  

f ~ s o  c - v 

which is also easily recognized as the more familiar formulation 

f ' =  f 1 -  . 
1 + -  v 

c 

In the derivation just described for the relativistic Doppler effect(s), the term y emerged from the prin- 
ciple of relativity, as applied to the classical Doppler-shift equations to include macroscopic uncertainty with a 
functional expression for f2, when the condition v ~ c constrains that functional expression. 

Macroscopic uncertainty for moving frames of reference is then included in the expression for f2 with 
equivalence of movements of source toward observer and observer toward source. Relative-velocity terms pre- 
sent in the classical Doppler equations were included in the above derivation without consideration of their 
measurability by the observer. 

It is known that special-theory effects become appreciable only when particles moving at high velocity 
begin to undergo physical changes that include wave-particle duality and microscopic uncertainty described by 
quantum theory. To further assess the contribution of this constraint to the relativistic description, we now 
apply quantum theory to the classical Doppler formulation. 
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Case 2. In a second derivation (without the Lorentz transformation) o f  the relativistic Doppler  effect, 

we will attempt to include some consideration o f  probabilistic aspects o f  photon distribution. For  this second 
derivation, we again begin with a classical formulation, the simple sinusoidal wave function as applied to re- 
flection o f  light waves by a mirror moving with velocity v with respect to the light source. For the electric 

field E of  a plane light wave incident on a mirror moving exactly normal to the direction o f  light propagation, 

the following expressions are valid: 

E i = a i cos (o~it - kix) 

for the incident wave, 

E~ = a~ cos (o)~t + k~) 

for a totally reflected wave. 

For v << c, x = -vt,  E i = E~ at the mirror we obtain 

p 

• CO i CO r 
a i = - a  r , -- - c ,  

k i k ;  

which will result in (see [2]) 

0)' r (C --  V) = (0 i (C + V) 

o r  

o~ i c -  v 2nf i  

(O r C + V  2rCfr fr  

o r  

c + v  

fr' = c _----~fi • (5) 

This is a formulation for the classical Doppler shift for a mirror moving toward and normal to the direction of  

the propagated light wave. 
It should be noted that only the Doppler  shift for the reflected light wave itself, i.e., considering the 

moving mirror as the source, is described by (5). For the Doppler shift considering a "virtual source" behind 

the mirror, the velocity of  the mirror would equal 2v. To make Case 1 and Case 2 more directly comparable, 
however, the Doppler shift is considered here for the reflected wave as i f  it were emitted f rom a source that 

moves in the same direction as the incident wave that is emitted by the stationary source. 

To broaden the generality o f  this classical  Doppler effect we now consider  condi t ions  for which 

v---) c, rather than conditions limited only to v << c, as specified so far. Actual physical conditions for which 
v ~ c require that we treat atomic and subatomic particles that can move at high velocities, i.e., v --) c, instead 

of  a "moving mirror." For these purposes, an a tom (or an electron) that radiates light can be considered as a 

light source that is equivalent to the moving mirror for which the classical Doppler  effect was  just  described. 
Atomic (and thus electron) emission and absorption of  light occur in discrete quanta as first described 

by Planck [3]. The Rayleigh-Jeans law accounts for the energy distribution actually observed for black-body 

radiation when hv << kT. Thus, for the amount o f  energy U(v)dv we have the expression 

U (v) dv --- kTv2dv, 
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where k is the Boltzmann constant, T is the temperature, h is Planck's constant. 
For higher radiation frequencies, however, Planck's distribution is necessary [3], namely, 

8~v 
hv 3 exp (- hv /kT)  

U (v) = ~ . 
c 1 - exp ( -  hv /kT)  

The Planck's-distribution equation is based on the requirement that light energy is absorbed or emitted (as for 
our particle source) in quanta and the energy E is equal to nhv, where v is the light frequency. 

Light quantization within this formulation, i.e., Planck's law, is essential to describe the absorption or 
emission of light energy of  higher frequencies by harmonic oscillators such as electrons within the walls of a 
hollow cavity. However, from Einstein's analysis of  the photoelectric effect (see Discussion below), the fre- 
quency of light (but not its intensity) that is absorbed by electrons within a metallic surface is related directly 
to the velocity of  the electrons induced to "escape" by the light, namely, 

1 2 
h (v - V0) = ~" mv , 

where v0 is the minimum frequency for electron escape. 
Thus, for higher radiation frequencies (such as those accounted for by Planck's black-body energy dis- 

tribution), we can infer that much higher electron velocities will also be encountered in the photoelectric effect 
(or the inverse photoelectric effect - see Diseussion). This will be especially true for frequencies > 1018 Hz, as 
occur for gamma rays. Therefore, for hv >> kT (black-body radiation) v ~ c (the photoelectric effect). 

Furthermore, a similar relation must also be obtained for the velocity of radiating electrons within or- 
bital trajectories around atomic nuclei. Namely, higher radiation frequencies (i.e., hv >> kT) will resonate with 
higher electron orbital frequencies and thus higher orbital velocities. Notwithstanding a "cloud"-like distribution 
of electron loci, for higher quantum numbers the relation v = 2ntoR approximates the correspondence of orbital 
electron velocity to frequency of oscillation. 

To broaden the classical Doppler effect derived above for a moving mirror, therefore, we will seek to 
introduce Planck's law for radiation from an equivalent electron (or other particle) light source that can move 
at high velocities, i.e., v ~ c. Ihtroduction of  light quanta into the classical Doppler formulation, then: 

1) allows inclusion of higher frequencies and, thus, particle velocities; 
2) includes probabilistic considerations (and thus microscopic uncertainty), since radiation of light 

quanta depends on the probabilities of transitions between atomic states; 
3) by Bohr's  principle of complementarity [4, 5] leads to a light intensity function (see below) that can 

be considered as an approximate measure of the probability of finding photons within an area of the wave flux. 
Light intensity L the average rate of energy transfer through unit area, can be considered proportional 

to E 2 and the average number of photons flowing through that area. 
The intensity li of  the light incident on the moving mirror can be described in terms of  light quanta by 

I~ = N~ hf i , (6) 

where Ni is the average total number of photons through unit area in unit time. 
Similarly, the intensity of reflected light lr is equal to 

I r = N r hfr. (7) 

Returning to the formulation (see above) for the classical Doppler effect for the moving mirror, we get 

fr C+V 

fi CmlJ" 
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Since Ni must equal Nr for totally reflected light, we obtain from Eqs. (6) and (7) 

h _ _  , 

ti Ni hfi c -  v 
(8) 

A similar relation was originally obtained by Wien using thermodynamic arguments to derive his "dis- 
placement" law (cf. [6]), which accounts for high-frequency black-body radiation. 

According to quantum theory, the emitted light quanta (as just described) are part of  a system that 
includes the emitting atomic or subatomic source. Bohr's correspondence principle allows another description 
of energy emission, one that is derived from classical descriptions of harmonic oscillators. Harmonic oscillators 
can be particles (electrons) or quantized packets within an electromagnetic field. In the correspondence limit, 
the average energy transfer will correspond to energy resulting from summation of harmonic oscillators that in 
the classical limit are approximated in a simple form by descriptions for waves in general. Waves in general 
can be considered as oscillating systems described by an expression for the energy of  oscillation, namely, 

1 
1 o~2A 2 or (2nj)2Ao, where A o is the amplitude (peak); f is the frequency of oscillation. 

It can also be shown, however, that the energy W of the radiation itself, i.e., the electromagnetic field, 
can be represented as the energy of a group of harmonic oscillators: 

W= 2 Z fZqq*'  

where q* are dynamical coordinates (that specify the radiation field). 
This latter formulation is obtainable from classical electromagnetic theory. However, these same terms 

satisfy a wave equation and thus can be encompassed by quantum theory. To further describe harmonic oscil- 
lators with reference to quantum theory, classical approximations (for Schr/~dinger wave equations [7]) can be 
used in perturbation theory. Thus, vector potential(s) from Maxwell's equations can be related to the light in- 
tensity I. Beginning with Poynting's vector, an expression for the intensity of the radiation I can be obtained: 

1= Ic(Exr [ 
4~ 

where 

I d a  
E . . . . .  H = V x a ;  

c dt" 

a is the vector potential, specified precisely for each point in space and time. 
Recalling that in free space 

IEI=IHI, IEIxlHI=IEI 2, 

it can be shown that the time-average intensity is equal to [8] 

2 
l =  0,} 12 

2 ~  la° 

We now have, therefore, two expressions for the intensity of the radiation I: 

2 
0~ 

I= Nhf , I= 2rw la°12 
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According to the complementarity and correspondence principles, these two expressions must apply to 
the energy not only within the electromagnetic (quantized) waves but also within the source of these waves 
such as atomic or subatomic particles capable of moving at high velocity. Such a particle source can be con- 
sidered as approximately equivalent to a moving mirror that totally reflects incident light. However, the particle 
source in the correspondence limit can move at velocities not encompassed by the nonrelativistic Doppler deri- 
vation shown above for the moving mirror. Thus, since classical approximations of Schr~klinger wave equations 
used in perturbation theory only apply to particle or radiation oscillators, the condition v-.,x c can be included 
in these approximations. 

Returning, therefore, to consideration of the moving mirror, now treated as an equivalent particle light 
source, for incident and reflected light we write 

2 2 
2 ('Or ]2 

/ i=~--~ laiol ,/r='~---~ laro • 

Dividing Ir by Ii, we obtain 

2 2 
I r O~r/2rrz" laro[ f?  la ol 2 

~ii-t~2/2rLc [a io l2-f i  2 [aio[ 2" 

Considering aro-= aio and the above relations, in the correspondence limit, assuming an isotropic light source 
and an intense light beam, we can write 

[r C+V f? 
I i c - v - f i  2 

(9) 

and thus, 

/ . 1 / 2  
_ / c  + v ~  ( 1 0 )  

This relativistic Doppler equation emerges from the correspondence of light energy to the energy of  
equivalent radiation oscillators that are treated as equivalent to an emitting electron source that can move at 
high velocity (i.e., v--~ c). Classical approximations of Schri~dinger wave equations (from perturbation theory) 
were required to implement this correspondence. These classical approximations are completely rigorous only 
for intense light beams that represent macroscopic collections of large numbers of photons [8]. We may con- 
sider that the initial inclusion of  quanta and the accompanying microscopic uncertainty implicit in these wave- 
equation approximations that have macroscopic meaning transform the classical Doppler equation into the 
relativistic result. 

Discussion. The equivalence of quantal and corresponding classical descriptions of energy was origi- 
nally suggested within Einstein's analysis of the photoelectric effect. 

Thus, we can infer three sequential steps in the photoelectric effect: 
1. Light energy in the oscillations of the quantized electromagnetic field is transferred to the electron 

oscillators within the metallic surface. 
2. Energy of the electron oscillations reaches a threshold for the electron's escape from its atomic 

orbit. 
3. Upon escape, oscillation energy is transformed into kinetic energy of the escaping electron(s) mov- 

ing at high velocity. 
In summary, we have 
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h ( f  - f o )  ----) A mx  2 ---)-~ mv . 

The above yields the relativistic Doppler formulation emerging in Case 2 just described. It is critical 
that the derivation of Case 2 included higher electron velocities (i.e., v --~ c) by including the higher radiation 
frequencies within Planck's energy distribution. Quantal descriptions of radiation (hv) must encompass rela- 
tivistic velocities of radiation-source electrons as they orbit atomic nuclei. The quantal radiation energies, there- 
fore, are an integration of classical as well as relativistic orbit velocities for electrons that absorb or emit that 
radiation. 

For both the photoelectric effect and its inverse, however, there is a crucial interaction of light and 
matter (the electron). This interaction permits exchange of energy when the quantized light oscillators resonate 
with the electron oscillator(s) within atomic orbits. The derivation of Case 2 (see above) suggests that relativis- 
tic Doppler effects depend on this light-electron transfer of energy within resonant wave oscillations. In this 
transfer, the overall intensity of the electric energy (and thus the number of electrons), but not the velocity of 
individual electrons, varies with the intensity of the light (and thus the number of quanta). Similarly, the reso- 
nant frequency of individual electron oscillators depends on the frequency of the light but not the intensity. 

We might ask how is it possible to have two intensity functions such that in one (8) the intensity is 
proportional to the frequency, and in the second (9) the intensity is proportional to the square of the frequency. 
Bohr's principle of complementarity in fact provides that the intensity of electromagnetic waves can be inter- 
preted in two ways. One way describes the intensity as the number of quanta or photons passing through unit 
area per unit time, and for this way the intensity varies as the frequency. The second interpretation of the 
intensity (according to Bohr) describes the intensity for waves as proportional to the square of  the electric-field 
intensity E 2 (and H2). For this way, the intensity varies as the square of the amplitude or, for a constant am- 
plitude, as the square of the frequency. Thus, Bohr's complementarity principle implies two ways of describing 
the intensity and, thus, two expressions, one proportional to the frequency, the other to the square of the fre- 
quency. The latter expression becomes more explicit and relevant when perturbation theory is applied to quan- 
tized radiation oscillators that are in resonance with the electron oscillators (within atomic particles). 
Perturbation theory, as applied here, however, utilizes classical approximations of Schr~linger wave equations 
(see above), which account for "particles" of matter as well as light. In general, the Schr~klinger equation [7] 
is a wave function formulated for W(x, t) such that ]W(x, /j2 is the probability of finding the particle within the 
distance interval dx at x. This is precisely how the square of the electric-field intensity E 2 multiplied by the 
volumetric interval d V  is proportional to the probability of finding a photon (or a quantum of light) within that 
interval. 

The relativistic Doppler shift as derived above describes the shift of the light intensity (or the energy 
transmission through unit area) due to the velocity of  the light source. This source-velocity-induced intensity 
shift depends on the quantal description of electromagnetic-wave radiation even at the highest frequencies and 
on Bohr's complementarity and correspondence principles. As discussed above, these principles encompass mi- 
croscopic uncertainty for the relativistic Doppler formulation when the probability of encountering a photon is 
approximated by the number of quanta of a given frequency N in a specified distance interval and the square 
of the electric-field intensity E 2 within a specified volume interval. 

The probability of encountering photons of relativistic-Doppler-shifted frequency, therefore, emerges 
from application of quantum theoretic principles with their included microscopic uncertainty. Under certain 
conditions, e.g., high quantum number (n) and/or high number (iV) of quanta, quantal descriptions correspond 
to a macroscopic electromagnetic flux. By contrast, macroscopic uncertainty due to moving frames of reference 
(Case 1) yields a relativistic Doppler formulation when the principle of relativity is applied to light waves. 

These Doppler derivations were implemented in the absence of the Lorentz transformations. Further- 
more, other equations essential to the special theory of  relativity can be derived directly from the relativistic 
Doppler equations as derived here in the absence of the Lorentz transformations. One interpretation of these 
derivations suggests, therefore, that relativistic considerations themselves derive directly from Bohr's principles 
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of correspondence and complementarity. When classical descriptions "correspond" to and include quantal de- 
scriptions, according to this interpretation, relativistic modification of the relevant equations will have also been 
included. 

The necessary role of microscopic uncertainty in relativistic phenomena, as implied above, emphasizes 
the fundamental role of physical transformations in these relativistic effects rather than measured differences 
due to different frames of reference. Radiation of an emitting electron, for example, will have a wavelength 
that decreases (according to the De Broglie relation [9]) and a mass that increases as the electron's velocity 
approaches c. Increased mass and frequency with increased particle velocity are closely related aspects of mat- 
ter's conversion into energy that can only be described probabilistically. 

In summary, as a radiating particle accelerates to velocities that approach the speed of light, it begins 
to oscillate with increasingly higher frequency. This progressively higher frequency and reduced period of os- 
cillation introduce progressively more uncertainty into its path of motion. Concomitantly, the light emitted by 
the accelerating particle is of progressively higher frequency (according to the Doppler effect), a frequency that 
must have some resonance with the frequency of the electron's oscillation(s). A progressively greater percent- 
age of the energy transferred to the particle through its acceleration is in the form of increased frequency of 
oscillation (or "mass"). Thus, the high velocity particle becomes more "wave-like" in its changes in energy as 
its velocity approaches the speed of light and as it enters the domain of microscopic uncertainty and thus quan- 
tum theory. According to this framework, the relativistic Doppler effect derives from energy shifts (induced by 
high source velocities) that must be considered within the quantum theoretic domain. 

Thus, these derivations of a relativistic Doppler shift suggest that the present theory more directly de- 
scribes intrinsic probabilistic properties of electromagnetic radiation rather than measurement differences attrib- 
utable to moving frames of reference. 

I am deeply grateful for the critical discussion and helpful suggestions of Dr. Yan Yufik of the Insti- 
tute for Biological Cybernetics and Johns Hopkins University and Dr. Harish Pant of the NINDS, NIH. 
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